

Transportation Environment of Contaminated Instruments before Reprocessing

Karin Bundgaard, Associated Professor, PhD, MScN, RN Aalborg University Hospital & Aalborg University

Partners in crime

Peter Rubak

Gerhard Kirmse

Silke Haibt-Winandi

The context

Introduction

International infection control guidelines recommend

- Reprocessing should commence immediately after use
- Different recommendations for environment
 - Europe: mostly dry to minimize risk of corrosion
 - UK and America: mostly moist to ensure efficient cleaning outcomes

However

- Recommendations are based on best practice and expert knowledge
- Research in a real-life clinical setting is warranted

Can a humid storage environment of surgical instruments before reprocessing increase patient safety and durability of instruments?

P. Rubak a, J. Lorenzen b, K. Ripadal c, A-E. Christensen d, D. Aaen e, H.L. Nielsen $^{e,f},$ K. Bundgaard $^{f,g_{e^*}}$

Aim

Aim of the study

To compare moist and dry transportation of surgical instruments in a real-life clinical setting

- Protein residues (cleanliness)
- Corrosion (surface changes)

Data collection

- Aarhus University Hospital
- Basic instrument sets (54 and 39 surgical instruments)
- Transportation
 - Dry: Abdominal Surgery Department
 - Moist: Orthopedic Spine Surgery Department

Defining Moist transportation/storage

- OR-Gauze (16 g, 30x45 cm) soaked with 300 ml of sterile water
- Closed container

Protein residue test

- 5-10 contaminated inst each tray
- Washing process as is (the disinfection phase)
- Elution process (include
- High-sensitive BCA prot (Bicinchoninic Acid)

PF-12"" ()

al cleaning/disin	fection
ng	2 min
nzymatic Getinge cleaner : 3 ml/l)	5 minutes at 55 ⁰ C (total cleaning time 8 minutes)
	Soft water
	Soft water
lisinfection	Demineralized water A ⁰ 3000
	15 minutes

Calibration curve BCA Protein Assay Kit

Surface changes

- Each instrument was visually inspected
 - Contact corrosion
 - Fretting
 - Pitting corrosion
 - Stains
 - Residue

|--|

0	No corrosion
1	Single small corrosion spot
2	Larger single corrosion spot, pitting
3	Several small corrosion spots
4	Several larger corrosions spots
5	Massive corrosion, multiple spots

Fretting corrosion

1 point

2 point

Contact corrosion

1 point

2 point

3 point

Pitting corrosion

1 point

2 point

3 point

Residue

Staining

General data – Protein residue

Reprocessing Cycles

	MTK	, Dry	EOP, Moist		
	Total Tested		Total	Tested	
Trays	24 12		10	8	
Cycle, Mean	76	75	67	66	
Cycle, Min	58	58	55	55	
Cycle, Max	99	99	70	70	

Waiting time before reprocessing

	Number of trays			
	Dry Moist			
2-4 hours	0	1		
4-8 hours	1	1		
8-12 hours	1	1		
12-24 hours	8	6		

General data - Corrosion

Reprocessing Cycles

	MTK	, Dry	EOP, Moist		
	Total Tested		Total	Tested	
Trays	24 10		10	9	
Cycle, Mean	76	75	67	66	
Cycle, Min	58	58	55	55	
Cycle, Max	99	99	70	70	

Exchanged instruments

	Number	Trays
Dressing Forceps	2	2
Forceps (Clamp)	3	2
Needleholders	5	5
Retractors	4	3
Scissors	6	5
Tweezers	4	2
Total	24	

Protein residue

Numbers above the bars represents number of instruments

	Dry	Moist
n	89	84
Mean, [µg/Probe]	27,7	26,9
Median, [µg/Probe]	10,0	15,0
Min, [µg/Probe]	10	10
Max, [µg/Probe]	336	333
Sd	43,5	42,6
CV%	63,6	63,0
Nr. of trays	12	8

- Kruskal-Wallis test (raw data) p=0.56
- Chi²-test (categorized data) p=0.55

Surface changes

Numbers above the bars represents number of instuments

Corrosion grading including fretting

	Dry	Moist
n	507	349
Mean, Points	0.8	1.3
Median, Points	1.0	1.0
Nr. of trays	10	9

Corrosion grading without fretting

	Dry	Moist
n	507	349
Mean, Points	0.4	1.0
Median, Points	0.0	1.0
Nr. of trays	10	9

Pitting and Stains

	Dry	Moist
n	507	349
Pitting	9	10
Stains	68	47
Nr. of trays	10	9

Corrosion with and without fretting on scissors

Corrosion with and without fretting on forceps

Comparison of instrument types

	n		Corrosion w. fretting, %		Corrosion w.o. fretting, %	
	Dry	Moist	Dry	Moist	Dry	Moist
Forceps	217	126	50	80	27	45
Needleholders	46	35	57	83	13	66
Scissors	64	36	84	97	44	92
Tweezers	56	72			45	85

Conclusion

Storage Environment and Instrument Cleanliness

- No correlation between storage environment and level of protein residue
- Insufficient data to establish a link between instrument type and level of protein residue

Storage Environment and Corrosion Formation

- Moist storage environments results in higher corrosion

Corrosion Across Instrument Types

- Consistency across instrument types independent of storage environment
- Scissors are the most corroded compared to needleholders, forceps, and tweezers

Reprocessing cycles and surface changes

- No correlation between number of reprocessing cycles and surface changes

Strengths and Limitations

- Real life setting
- Instruments used for surgery
- Number of examined instruments
- Reprocessing: Standard protocols for washing, disinfection and sterilization
- Handling of reprocessing: Trained personnel from the CSSD
- Protein residue analysis: Performed by professionals and use of a high sensitivity BCA method
- Corrosion analysis: Performed by professionals and use of a standardized scoring system
- Choice of method of creating a moist environment spray instead of sterile water
- Choice of instruments complex instruments instead of basic instruments

Thank you!